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ABSTRACT  

For the importantance of the Stasheff polytope in different area of mathematics and the relationship between them 

we studied the Stasheff polytope and the permutohedron in view of combinatorial and algebra using the method that 

computer the coordinate of their vertices. The relationship between the associahedron and the permutohedron are also 

explained with the aid of graph theory. 
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INTRODUCTION  

The Stasheff polytope	�� (associahedron), appeared in the sixties of the work Jim of Stasheff on the recognition 

of loop space, [5]. 

The associahedron �� is the convex hull of points for the vertices of the associahedron which represented by 

planar binary tree	��	with (n+1) leaves. Let �� be the symmytric group and M (�) = (��1), . . . , ���)) ∈ 	��. The convex 

hull of the points M (�), for � ∈ 	�� represent (n-1) – dimensional polytope denoted by ���� and called it the 

permutohedron.  

In the Euclidian space �� the coordinates of a point are denoted by ��	, … , ��, and the hyperplane H is represented 

by the equation ∑ �� =	
�

�

�
��� 	�	�� + 1),	Loday in [ 5 ] showed that ���� ⊆ ����, (by truncation) such that the 

permutahedron can be obtained by truncating the standard simplex along some hyperplanes, one each cell of ∆���                  

(except the big cell), where 2��� points are common vertices of ���� and ����, The main idea of our work is to prove 

Lodays result using another method. 

PRELIMIARIES 

Definition (1), [1] 

Let Ax ≤ b, where A∈ ��	�	�	is a given real matrix, and b∈ �� is a known vector. A set P ={ x ∈ �� : Ax ≤ b } is 

said to be a polyhedron. A polyhedron P is bounded if there exists M	∈ � , such that ║x║≤ M for every x ∈ P. Every 

bounded polyhedron is said to be a polytope, as seen in figure 1. 

 

Figure 1: A Polytope 
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Definition (2), [3] 

A graph G consists of two finite sets V and E each element of V is called vertex and each element of E is called 

edge. An edge of G represented as unordered pairs of vertices. A graph G is connected if every pair of vertices can be 

joined by a path, as seen is figure 2.  

 

Figure 2: Graph 

Definition (3), [3] 

A connected graph that contains no cycles is called a tree, as seen in figure 3.  

 

Figure 3: Tree 

Note (1), [6] 

Let �� be the set of planar binary trees with n internal vertices, observe that there is a bijection between the set of 

trees and the set of parenthesizing of a word with n+1 letters as shown in the following figure.  

 

Figure 4: Parenthesizings 

Definition (4), [4] 

Let ��	be the symmetric group on the set {1,…, n}. An (k ,n-k) –shuffle is a permutation � ∈ ��                               

where � = (� (1),…,	� (k) │� (k+1),…, ���)) ∈ 	 �� such that ��1) < ��2) < ⋯ < ��#)	and ��k + 1) < σ�k + 2) <

σ�n) where ( ��1), … , ���))	is the image of {1,...,n} under the permutation �. 

Definition (5), [1] 

A set of points X = &��'	for i = {1,...,n} which satisfies ∑ ��
�
��� = 

��� �)

�
, , is said to be a hyper plane. 

PLANAR BINARY TREES 

Now, some definitions and properties for the planar binary trees are given below:  
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Definition (6), [4] 

A planar tree is an oriented graph drawn on a plane, with only one root. Its binary if any root is trivalent             

(one root and two leaves).  

Note (2), [4] 

Let �� be the set of all planar binary trees with (n+1) leaves, with n interior vertices The number of element in �� 

is the Catalan number (� = (2n)! / (n! (n+1)!). 

Example (1), [4] 

For the planar binary trees, 

 

The Catalan number of each them is )* = 1, )� = 1, )� = 2, +�,	)- = 5. 

Definition (7), [2] 

A leveled tree (or ordered tree) is a planar binary tree such that each node must be on distinct horizontal level.  

Example (2), [4] 

Let �- be the set of all binary trees as given below:  

 

Then the leveled and un leveled tree are shown by figure 5 

 

Figure 5: Level and un Leveled 

Note (3) 

Let /� be the set of all leveled trees with n+1 leaves and n nodes, then the number of trees in /� is n!, [ 6 ]; as 

given in example (3.3).  

Example (3), [2] 

For /- the number of leveled trees with 4 leaves is 6 which are 
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Note (4) 

For any leveled tree one can associated a permutation by labeling the vertices from 1,2,3,…,n according to the 

level. Then the permutation is the leveled number from left to right.  

Example (4), [4] 

For the leveled trees 

 

The permutations are (231) and (132) respectively. 

Definition (8), [4] 

The grafting (p+q+1)-tree is the joining for the roots of p- tree /� and a q- tree /� that create a new root.              

For instance, 

 

Definition (9), [5] 

Let /�
∗ be the set of planar trees with n+1 leaves n ≥ 0 (and one root) such that the valence of each internal vertex 

is at least 2, and /�
∗ = /�,�

∗ ∪… ∪ /�,�
∗ where /�,4

∗ made of the planar trees which have n – k + 1 internal vertices.  

Example (5), [5] 

 

Definition (10), [5] 

A tree t is said to be a refinement of the tree 5 ′ if 5 ′ can be obtained from t by contracting to a point for some of the 

internal edges, any tree in /�,���
∗ is of the form  

 

THE ASSOCIHEDRON 67 

In this section we the represent the trees as a point in �� with integral coordinate using the following steps:  

• Numbered the leaves of t from left to right by 0, 1, 2,…,n. 

• Numbered the internal vertices from 1 to n. 3. Represented the number of leaves on the left side by +� of the 

vertex i, and represented the number of leaves on the right side by8�, so                                                               

M(t) = ( +� 8�, … , +� 	8� 	, … , +�	8�) 	 ∈ 	�
�	.	 
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The following example represents how to convert tree to a point in �� .  

Example (6), [6] 

 

Note (6), [7] 

The associahedron of dimension n is the convex hull of the point M(t) for all planar binary trees with (n+1) leave. 

The sum of the coordinate �� for M(t) is ∑ ��
�
��� = 

��� �)

�
, So the associahedron lies in the hyper plane given by this 

equation, that is for any tree t ∈ 	�� the coordinates of the point M(t)=(��, … . , ��	)∈ �
� satisfy the relation ∑ ��

�
���  = 

��� �)

�
 

Hence M (t) ∈H.  

As an example is given by figure (6), [8] 

 

Figure 6: The Associahedron 

THE PERMUTOHEDRON 97�: 

Another example of a polytope related to a combinatorial structure is the permutohedron. An element � in the 

symmetric group ��, a associated to the point M(�) which is equal to (� (1),…, � (n)) ∈ 	��. 

The permutohedron ���� is a convex hull of all points M (�) for all � ∈ 	 �� . The sum of coordinates is 

		∑ �� =	
�
���  

��� �)

�
 

So the permutohedron lies in the hyperplane given by the above equation [7]. As an example is given by                   

figure (7) 

 

Figure 7: The Permutohedron 
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RELATING THE PERMUTOHEDRON AND ASSOCIAHEDRON 

The main purpose of this chapter is to prove Lodays result using another way. 

We need the following lemma to prove our theorem. 

Lemma (1), [4] 

There is a subjective map from �� to �� .	 

Note (7) 

The subjective map given in lemma 1 convert every permutation to a binary tree using the following, 

The image of {1, … , n } under the permutation �	is a sequence of positive integers [ ��	, … , ��	]. Hence  

• Replace the largest integer in the interval ��	, … , ��	 say �<	, by the length of the interval (which is n here ). 

• Repeat the modification for the intervals ��	, … , �<��		+�, �< �	, … , ��	, until each integer has been modified,                

This gives the name of tree. 

• Using the grafting procedure on the name of tree to get the tree 

Now, we prove our result. 

Theorem (1) 

Any Permutohedron ���� is contained in the associahedron ����		for all n	≥ 1.  

Proof 

Firstly, we convert the permutohedron ���� to the set of binary trees ��, by lemma (1). Let =�	= &0,1'��� and ∅ : 

Y�	 →	=�, defined by ∅ (t) = (A�,…,A���) ∀	5 ∈ �� , where A� =0 (resp. A�	 = 1) if the i th leaf of t is pointing to the left 

(resp. to the right ), we code the vertices of the cube by the elements of =�. The convex polytope (��� which is defined in 

H by the equations �C(M) ≥ 0	for D =	(1 2 … i │i+1…..n) and D = �	E + 1…�|1	2	. . E), E = 0	, … , � − 1,	then the facetes 

of (��� are in the hyperplanes H�,�….�	, H��,…�,…, H�….�,� and H�….�,�, H-….�,��	,…, H�,�…..���. The coordinate of the vertex 

M(A)= ( ��,	..., ��) for A = �A�	, … , A���) ∈ =�	are	�� 	= i - A���( n-i+1) (i-1) + A� (n- i) (i), for i = 1 , … , n, [ 7 ]. 

Now, we truncate every point in the cube which is give two levels trees and every point in the cube resulting from 

grafting two trees and refinement in the associahedron using the hyperplanes and its dual to get the permutahedron 

The following example explain theorem (7.1).  

Example (7) 

Let S3 be the symmetric group. For any σ∈ S3, we get 

 �-= {(123), (132), (321), (213), (312), (231) } and 

(1|2|3) = (123), (2|1|3) = (213), (2|3|1)=(231), (3|2|1)=(231), (3|1|2)=(312), 

(1|3|2) = (132) 
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 I ∶ 	 �- →	�-, By lemma 1, we get 

For � = (123), then I (123) = (123) = , 

Similarly, we set  

 	� = (321), then I (321) = (321) = , 

� = (213), then I (213) = , 

� = (312), then I (312) = (312) = , 

� = (231), then I (231) = (131) = , 

� = (132), then I (132) = (131) = , 

The following planar binary tree is obtained 

 

Now, =- = &	0, 1'�	= { (0,0), (0,1), (1,0), (1,1) }.  

M (A) = {��, �� , �- } , A = (A�,A�),  

�� 	= i - A���( n-i+1) (i-1) + A� (n- i) (i), for i = 1 , … , n.  

, we get A = (0,1)  

�� = 1- A* (3-1+1)(1-1) + A� (3-1)(1) = 1+0 =1,  

�� = 2- A� (3-2+1)(2-1) + A� (3-2)(2) = 2+2 =4, and 

�- = 3- A� (3-3+1)(3-1) + A- (3-3)(3) = 3-2 =1, then 

M (A) = (1, 4, 1) , … etc  
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Figure 8: The Cube 

Now,  

• Apply definition (2.5) on the set of coordinate to get the hyperplane and its dual. 

• Truncate every point in the cube which is given by two levels trees. 

• Truncate every point in the cube resulting from grafting and a refinement in the associahedron to get the 

permutahedron.  

 

Figure 9: The Permotuhedron 
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